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Abstract
Various aspects of the collective behaviour of non-equilibrium nonideal plasmas
are studied. The relaxation of kinetic energy to the equilibrium state is
simulated by the molecular dynamics (MD) method for two-component non-
degenerate strongly non-equilibrium plasmas. The initial non-exponential
stage, its duration and the subsequent exponential stage of the relaxation
process are studied for a wide range of ion charge, nonideality parameter and
ion mass. A simulation model of the nonideal plasma excited by an electron
beam is proposed. An approach is developed to calculate the dynamic structure
factor in non-stationary conditions. Instability increment is obtained from MD
simulations.

PACS numbers: 52.25.Dg, 52.25.Fi, 52.27.Gr, 52.35.Tc

1. Introduction

There has been increasing interest in non-equilibrium nonideal plasmas both in experiment
[1–3] and theory [4, 5].

The conclusion [4] about the non-equilibrium state of experimental nonideal plasmas
was based on the analysis of diverse experimental data, in particular on conductivity. The
authors of recent experimental works [6–8] claim to have conditions close to equilibrium,
but the Landau–Spitzer theory completely fails to describe the results. Nevertheless, the
data can be explained by an equilibrium, but much more sophisticated theories [9–11]. The
failure of the Landau–Spitzer-like theories does not imply, by themselves, that the plasma is
in a non-equilibrium state. The main argument for non-equilibrium [4] was the scatter of
the experimental data for the Coulomb part of plasma properties. The results for different
materials, densities, and temperatures were considered and Coulomb conductivity was picked
out. The latter can be presented in a reduced form as a dependence of dimensionless Coulomb
conductivity on a nonideality parameter. These conductivity data assembled in this form
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were published in [12] and used later in [13]. No sophisticated equilibrium theory is able to
account for the scatter of reliable experimental data presented in the normalized form. A new
challenge is the scatter of the EOS data of the Livermore and Sandia groups [14, 15] which is
also attributed to the non-equilibrium two-temperature state [16].

There have been numerous attempts to modify the Boltzmann equation and extend it
to dense systems [5, 17, 18]. In fact all these approaches are rather formal and explicit
results can be obtained only for weakly nonideal systems or close to equilibrium. The authors
[19] extrapolate their variant of the kinetic equation only to nonideality parameters less than
unity and checked the extrapolation by the comparison with MD simulation. The authors
[1–3] tried to compare their experimental results with theories for strongly non-equilibrium
nonideal plasmas with multiply charged ions. They consider only simple modifications of the
Landau theory [20], the binary collision approximation extended to strong scattering [21], and
the density functional approach [16, 22]. Following the Landau approach [23] plasmas with
singly and multiply charged ions were treated in the same way.

On the other hand, many experiments were conducted under quasi-stationary conditions.
Some of experimental data on nonideal plasma properties (e.g. [24, 25]) can be explained
in terms of plasma non-equilibrium [4, 26]. The most drastic effect was observed in [24]
where Cs wire explosion in dense Ar atmosphere was investigated. The experimental values
of electrical conductivity were three times lower than the data of other experimentalists and
theoretical estimates. The conductivity data of [24] can be described [27] by the formula

σ = ωp/4π (1)

corresponding to a highly turbulent (non-equilibrium) plasma [28, 29] with an effective
collision frequency equal to the plasma frequency ωp. An attempt to give a theoretical
explanation of the mechanisms of plasma instability development was undertaken in [26]. It
was shown that the beam instability could be the reason for plasma turbulence. The run-away
electron beam arises at the boundaries of transverse bright and dark layers (strata) observed
in the experiment. These electron beams are formed by very strong electric fields existing
between the layers. The mechanisms and dynamics of strata formation were investigated in
[26] as well. Some ideas concerning nonideal plasma instabilities are presented in [30].

In the present work the MD method is used to study strongly non-equilibrium nonideal
plasmas. In this case the MD method is more efficient than a numerical solution of kinetic
equations. The relaxation of the electron and ion kinetic energies in plasmas with multiply
charged ions is considered. A beam–plasma system is simulated to investigate instability
development and stationary non-equilibrium plasma states.

2. Relaxation in plasmas

We consider an electroneutral two-component system of ZN electrons and N ions with masses
m and M, respectively, Z is the charge of the ion. The nonideality is characterized by the
parameter �e = e2(4πne/3)1/3/(kBT ) for electrons and �i = Z2e2(4πni/3)1/3/(kBT ) for
ions, where ne = Zni and ni are the electron and ion number densities, T is the temperature.
The relaxation in the system of free charges is studied. A quasiclassical effective pair electron–
ion potential is used so that the low energy bound states in the Coulomb well are not to be
taken into account3. The form of the interaction potential (‘corrected Kelbg’) is

Vcd(r) = eced

r

[
F(r/λcd) − r

kBT

eced

Ãcd(ξcd) exp(−(r/λcd)
2)

]

3 It should be noted that a deeper Coulomb potential (with respect to temperature) is used in studies of the
recombination relaxation in ultracold plasmas [31, 32].
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λcd = h̄
/√

2mcdkBT m−1
cd = m−1

c + m−1
d ξcd = −(eced)/(kBT λcd)

(2)
F(x) = 1 − exp(−x2) +

√
πx(1 − erf(x)).

The coefficients Acd(T ) provide the exact value of the Slater sum and its first derivative at
r = 0. The definition of these parameters can be found in [33], and other details of the
simulation model in [34].

The number of ions is N = 64–100 in our simulation. It was shown [35–37] that, due to
the screening effects in two-component plasmas with �e ∼ 1, each particle effectively interacts
only with its nearest neighbours, and the exponential Debye law for the effective interparticle
interaction remains valid for distances larger than the average interparticle distance even
for �e > 1. It was found that N = 50 was sufficient for such plasmas when calculating
thermodynamic properties and correlation functions [35–37]. In this paper we performed test
simulations of the relaxation in strongly non-equilibrium plasmas for N varied from 25 to 800
and found that starting from N = 50, the scatter of the relaxation curves for different N is
within the numerical error.

Two different initial conditions are investigated for spatial configuration of ions. The
first one is a crystal structure with cubic lattice which corresponds to the relaxation in solids
[1, 2]. The second is a quasi-random configuration obtained from the equilibrium isothermal
electron–ion plasma with the same number density. Statistically independent equilibrium
configurations of electrons supplement the ensemble of initial states. In both cases the initial
ion velocities are dropped to zero and the electron temperature is equal to 30 000 K. This model
describes the plasma just after ionization where Te � Ti . The results of MD simulation runs
are averaged over an ensemble of I = 48–192 initial states in both cases. Provided the result
is N-independent, the relative error is given by 1/

√
NI . The error bars in figures correspond

to the confidence coefficient of 0.68. The bars are not indicated if they are smaller than the
size of the points.

The relaxation from the initial conditions given above is characterized by a decay of
the difference between electron and ion kinetic energies �T = Te − Ti . The values of
Te and Ti are obtained as the average kinetic energy of the particles in MD simulations,
T (t) = 1

2NI

∑N,I
j,k mv2

jk(t). The dependences of �T on time are shown in figures 1(a) and
(b) for different initial conditions, the time here and below is measured in periods of electron
plasma oscillations τe = 2π/ωp. The MD simulation results are compared with the Landau
theory [23] which leads to

dTe

dt
= −Te − Ti

τei

τei =
(

Te

Te(0)

)3/2
M/m

8
√

3πZLe

�−3/2
e . (3)

The solutions of this equation are presented in figure 1(c) which are the extrapolations of the
Landau theory far beyond the limits of its applicability. The Coulomb logarithm Le is set to
be equal to 3. All figures 1(a)–(c) show the exponential decay �T ∼ e−t/τB in the relaxation
tail. The duration of the initial non-exponential stage is denoted as τnB . Both times τB and
τnB are shown in figure 1(d ) depending on Z for MD results. The deviations from the Landau
theory (3) are as follows. First, the exponent τB is greater for MD simulations by more than
two orders of magnitude in accordance with [1, 2]. Second, MD simulation shows that the
duration of the initial non-exponential stage τnB is greater than the theoretical one in the case
of crystal-like initial conditions. As seen from figure 1(d ) it grows exponentially with Z
while τB remains almost constant. Thus for Z > 3 the non-exponential stage becomes the
predominant stage of the relaxation. It should be noted that while the non-exponential stage
is strongly dependent on the initial conditions the time τB is almost independent of it. This
agrees with the earlier results [38].
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Figure 1. (a)–(c) The difference between the average kinetic energies of electrons and ions
�T = |Te − Ti | depending on time for different ion charges Z: MD simulations for crystal-like
(a) and quasi-random (b) initial conditions, ideal plasma theory [23] (c). (d ) The dependence of the
relaxation times on the ion charge Z for crystal-like initial conditions: circles—τB , triangles—τnB

and quasi-random initial conditions: rhombus—τB . M/m = 100, �e = 1.28.

Table 1. The dependence of the exponents αB and αnB (4) on Z for �e = 1.28.

Z αB αnB

1 0.85 ± 0.01 –
2 0.90 ± 0.03 0.94 ± 0.01
4 0.84 ± 0.04 0.99 ± 0.02
7 0.67 ± 0.09 1.00 ± 0.02

Figures 2(a)–(c) show the dependence of the relaxation times on the ion–electron mass
ratio M/m for crystal-like initial conditions. It is seen that for each value of Z, it is possible
to draw power fits

τB ∼ (M/m)αB τnB ∼ (M/m)αnB . (4)

The coefficient αB depends on � as shown in figure 2(d ). It tends to 1 in the ideal plasma
limit (�e → 0) in accordance with (3). The dependences of both αB and αnB on Z are given
in table 1.
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Figure 2. (a)–(c) The dependence of the relaxation times τB (circles) and τnB (triangles) on the
electron–ion mass ratio for different ion charges Z. All mass dependences are fitted by power fits.
�e = 1.28. (d ) The dependence of the coefficient αB (4) on �e for Z = 1.

Using the given �-dependence and mass dependence one can estimate the relaxation times
in real experimental conditions. In the case of experiments with shock compressed aluminium
[2] (Te(0) = 2.4 eV, ne = 1.2 g cm−3, �e = 4.1, Z = 3) we obtain the relaxation times τB =
0.4 ps, τnB = 4 ps. The error in determining coefficients αB and αnB is about ξα = 5%. The
corresponding error of extrapolation of relaxation times is ξτ = log(Mr/M)ξα = 40%, where
Mr/M is the ratio between real and model ion masses. The obtained precision is enough for
comparison by an order of magnitude.

3. Stationary non-equilibrium

The non-equilibrium appears due to the initial conditions of the plasmas considered in the
previous section. The plasma then relaxes to its equilibrium state with all its parameters
approaching equilibrium ones in the course of time evolution. In this section we consider a
stationary non-equilibrium caused by an electron beam propagating with a constant velocity
through the plasma. This type of non-equilibrium exists in some experiments when large
electron flows arise in plasma. The aim of this simulation was to detect the excitation of
non-equilibrium collective plasma oscillations which are permanently present in the case of
beam-excited plasma.
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A model of hydrogen plasma (with realistic electron to ion mass ratio) consisting of
200 to 600 particles placed in the box with periodic boundary conditions is used in MD
simulation. The choice of the number of particles does not influence very much the results of all
simulations presented below, except for the better smoothness of the dynamic structure factors
for larger systems. The number of particles chosen is sufficient to study oscillations at plasma
frequencies [39]. We use a cut-off pseudopotential, where the electron–ion Coulomb pair
interaction is replaced by a constant (3kT ) at cohesive energies greater than 3kT , in this part of
the work. Electron–electron and ion–ion interactions are described by electrostatic repulsion
[39]. The equilibrium state prepared by the Monte Carlo procedure is used as the initial
condition for the MD experiment. The initial equilibrium parameters are � = 1, T = 30 000 K
for the plasma.

Then a number of extra electrons, which simulate the beam, are driven through the system
in one direction with constant velocity vector. The entry point is randomly selected for each
extra electron entering the simulation cell and reselected when it crosses the cell boundary.
The extra electrons interact with plasma particles, but their own velocities and trajectories
are kept unchanged, once selected. Typical parameters of the beam are: density nb = αne,
velocity V = 3vT , where α = 0.03, ne is the plasma electron density and vT = √

3kBT /me

is the electron thermal velocity in equilibrium.
The time evolution of the component energies of the system is shown in figure 3(a).

Electrons are heated up faster than ions, therefore a two-temperature plasma arises as the
result of beam excitation.

The superthermal excitation of plasma oscillations can be detected by comparing the
dynamic structure factors (DSFs) of the plasma under consideration [39–41] for different
k-vectors with those characterizing the equilibrium case. The oscillations show up as enhanced
and shifted peaks of the DSF and corresponding changes in the dispersion curve ωmax(k).

The temperature of electrons grows too rapidly due to beam excitation for direct
measurement of DSF in the MD experiment, which requires averaging over a relatively
long period of time without significant change of the system characteristics. To overcome
this difficulty, the same idea is applied to withdraw the energy from the system and keep the
average electron temperature constant for the period of DSF measurement. The beam-excited
system is simulated until the electron temperature reaches some value Tm at time tm. Then the
simulation of the system is continued with additionally applied velocity scaling at every time
step which retains the electron temperature at the constant level Tm. This is performed for the
period which is sufficient to measure DSF. The resulting DSF characterizes the level of plasma
excitation by the beam at the time moment tm. The close idea of freezing non-equilibrium
state was applied in [42].

An example of DSFs measured at temperatures Tm1 = 1.2T0 = 36 000 K and
Tm2 = 1.8T0 = 54 000 K is shown in figures 3(b)–(d ) for different k-values compared
with the equilibrium DSF. The corresponding points in the time evolution are marked by open
circles in figure 3(a). As expected, the DSFs show a remarkable change of intensity in the
peak regions in the case of beam excitation.

In order to be sure that the properties of the system with a beam do not change while the
velocities are being scaled we check the pair correlation functions (figure 4(a)) and electron
velocity distribution function (figure 4(b)) averaged over two consequent subintervals of the
DSF measurement period. The duration of these subintervals is 1500/ωp. Beam particles
are not taken into account when calculating velocity and pair distributions. As is seen
from the figures, the pair correlation function remains the same for the whole measurement
interval. The velocity distributions for two subintervals are also very close to each other
and to the Maxwellian one. This allows us to assume that velocity scaling does not change
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Figure 3. (a) Time evolution of the component temperatures during beam excitation. The points
of DSF measurement are marked by open circles. (b)–(d ) Dynamic structure factors for different
stages of plasma excitation drawn for the first three minimum k-vectors allowed in the MD cell
of the size selected in the simulation. Solid curves represent the equilibrium DSF, dashed lines
DSF at t = 56/ωp and dot-dashed lines DSF at t = 182/ωp . (b) k = 0.34R−1

D = 1.49×109 m−1;
(c) k = 0.49R−1

D = 2.15×109 m−1; (d ) k = 0.59R−1
D = 2.59×109 m−1, where RD is the Debye

length in equilibrium. The same arbitrary units are used for (b)–(d ).

the microscopic properties of the system significantly and serves only as a mechanism of
additional cooling.

The time dependence of the ratio of maximum value of non-equilibrium DSF to the
equilibrium one Sm(t)/Sm(0) is presented in figure 5(a) for three values of k. The greater
k does not manifest any instability development. The exponential fit of the data gives the
exponent of the squared growth of the collective electric field. Half of the exponent is the
instability increment, figure 5(b).

According to the theory for weakly collisional plasma the hydrodynamic and kinetic
instabilities can be developed for the selected plasma parameters. In fact (see e.g. [43]), two
instability conditions must be satisfied for a collisional plasma:

τδ � 1 (5)

δ = δcl − ν > 0 (6)

where τ is the relaxation time of a perturbation, δ is an instability increment (that is δ = Im ω,
ω is a solution of the dispersion equation), δcl is the increment for collisionless plasma and
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Figure 4. Microscopic distributions of the beam-excited system under velocity scaling for two
subintervals of the DSF measurement period. The first half of the whole interval of duration
3000/ωp is represented by solid lines, and the second half by dashed lines. (a) Pair correlation
function for electron–electron (gee) and ion–electron (gie) correlations. (b) Electron velocity
distribution function. vT = √

3kBT /me is the electron thermal velocity.
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Figure 5. (a) Time dependence of DSF maximum to the equilibrium DSF maximum ratio:
circles—kae = 0.34, rhombus—kae = 0.48, triangles—kae = 0.59; curves 1–3—corresponding
exponential fits. (b) k-dependence of instability increment: points—MD simulation, dashed line—
schematic drawing of hydrodynamic instability increment [43].

ν is the collisional damping decrement of plasma waves. For the parameters selected in the
MD experiment the maxima of both hydrodynamic and kinetic instability increments have the
same order of magnitude and are reached at kae ≈ vT e/V and ω ≈ ωp. The value of the δcl

can be estimated by the following equation:

δcl/ωp = 31/22−4/3α1/3 ≈ 0.2. (7)

According to [44] the collision damping decrement ν/ωp at � ≈ 1 cannot be greater than 0.1.
Thus, δ/ωp ≈ 0.1 > 0 and (6) is satisfied.

The estimation of the beam relaxation time is given by [43]

τ ≈ α1/3 (V/vT e)
3/2 τe (8)
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where τe is the Maxwellization time of plasma electrons. The latter for nonideal plasma can
be evaluated using the MD results of [38] τωp ≈ 0.1π . Substituting the corresponding values
in (5) one obtains τδ ≈ 15 � 1.

Thus, both beam instability conditions (5) and (6) are satisfied. We compare our
simulation results on instability increment with the predictions of [43] in figure 5(b). It
is seen that the results of the MD simulation qualitatively agree with this theory concerning
the decrement maximum position and the values of k at which the instability ceases to develop.
The quantitative discrepancy is not surprising. It may result from, e.g., rude estimation of
collisional damping, from the fact that the MD simulation is performed on the nonlinear stage
of instability and poor applicability of the ideal plasma theory to the nonideal plasma at all.

4. Conclusion

The collective behaviour of nonideal plasma is studied for different ion charges Z.
The time dependence of the relaxation of the kinetic energy changes drastically for large

Z. The duration of the non-exponential relaxation stage increases exponentially with Z for
crystal-like initial conditions and becomes predominant for Z > 3. The dependence of the
exponential stage of the relaxation of the initial conditions was not observed.

The collective behaviour of nonideal plasma results in the excitation of diverse instabilities.
The extrapolation of the ideal plasma macroscopic instability theory to the nonideal plasma
shows that, at least, beam instability can be developed in nonideal plasma. MD simulation
confirms the fact that the instability does take place.

The comparison of MD simulation results with the extrapolated theory shows qualitative
(but not quantitative) agreement. It means that the maximum instability increment lies at
k-values predicted by the theory [43]. The instability does not manifest at higher values of k
in accordance with the hydrodynamics instability theory as well.
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